
FAME_library

BLOODROCK/tRSi/F-Innovation

FAME_library ii

COLLABORATORS

TITLE :

FAME_library

ACTION NAME DATE SIGNATURE

WRITTEN BY BLOODROCK/tRSi/F-
Innovation

February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FAME_library iii

Contents

1 FAME_library 1

1.1 FAME.library/FAMEAdd64 . 1

1.2 FAME.library/FAMEAllocObject . 2

1.3 FAME.library/FAMEAllocPooled . 3

1.4 FAME.library/FAMEAvailExe . 4

1.5 FAME.library/FAMEChrCut . 5

1.6 FAME.library/FAMEChrCutCase . 6

1.7 FAME.library/FAMECreatePool . 6

1.8 FAME.library/FAMECutANSI . 8

1.9 FAME.library/FAMEDeletePool . 8

1.10 FAME.library/FAMEExecuteDir . 9

1.11 FAME.library/FAMEFileCopy . 10

1.12 FAME.library/FAMEFillMem . 11

1.13 FAME.library/FAMEFreeDevInfoList . 12

1.14 FAME.library/FAMEFreeDiskSpace . 12

1.15 FAME.library/FAMEFreeExecuteDirList . 12

1.16 FAME.library/FAMEFreeFile . 13

1.17 FAME.library/FAMEFreeObject . 13

1.18 FAME.library/FAMEFreePooled . 14

1.19 FAME.library/FAMEFSearch . 15

1.20 FAME.library/FAMEGetDevInfoList . 15

1.21 FAME.library/FAMEIsNumStr . 16

1.22 FAME.library/FAMELoadFile . 16

1.23 FAME.library/FAMELoadFilePooled . 17

1.24 FAME.library/FAMEMemSet . 19

1.25 FAME.library/FAMEDosMove . 20

1.26 FAME.library/FAMENum64ToStr . 20

1.27 FAME.library/FAMENumToStr . 23

1.28 FAME.library/FAMEOverallBytes . 26

1.29 FAME.library/FAMEPostFile . 27

FAME_library iv

1.30 FAME.library/FAMEResetPool . 29

1.31 FAME.library/FAMEReverseLong . 29

1.32 FAME.library/FAMEReverseWord . 30

1.33 FAME.library/FAMEStackReport . 31

1.34 FAME.library/FAMEStartECTimer . 31

1.35 FAME.library/FAMEStopECTimer . 32

1.36 FAME.library/FAMEStrChr . 32

1.37 FAME.library/FAMEStrChrCase . 33

1.38 FAME.library/FAMEStrCopy . 34

1.39 FAME.library/FAMEStrCut . 34

1.40 FAME.library/FAMEStrCutCase . 35

1.41 FAME.library/FAMEStrFil . 36

1.42 FAME.library/FAMEStrMid . 36

1.43 FAME.library/FAMEStrStr . 37

1.44 FAME.library/FAMEStrStrCase . 37

1.45 FAME.library/FAMEStrToLower . 38

1.46 FAME.library/FAMEStrToUpper . 39

1.47 FAME.library/FAMESub64 . 39

1.48 FAME.library/FAMESwapRedWhite . 40

1.49 FAME_library.Guide: Contents . 41

1.50 FAME_library.Guide: Debug Functions . 43

1.51 FAME_library.Guide: File Operations . 43

1.52 FAME_library.Guide: Memory Functions . 44

1.53 FAME_library.Guide: Miscellaneous Things . 45

1.54 FAME_library.Guide: String Operations . 46

1.55 FAME.library/Notes . 47

1.56 FAME.library/Introduction . 48

FAME_library 1 / 49

Chapter 1

FAME_library

1.1 FAME.library/FAMEAdd64

NAME
FAMEAdd64 -- perform a QuadWord (64-bit) addition

SYNOPSIS
FAMEAdd64(SrcHi, SrcLo, Destination)

d0 d1 a0

VOID FAMEAdd64(ULONG, ULONG, APTR)

FUNCTION
Adds an unsigned 8-byte value (SrcLo/SrcHi) to a QuadWord at a
specified destination address.

INPUTS
SrcHi - The upper LONG of the 64-bit value to add.

If you want to add a LONG to the destination
value (instead of a QuadWord), set SrcHi to NULL
and pass the LONG to be added in SrcLo.

SrcLo - The lower LONG of the 64-bit value to add.

Destination - A pointer to a memory address of 8 bytes
in size where SrcHi and SrcLo get added to.
These 8 bytes build one QuadWord. If the first
half of this area (the first LONG) is NULL,
the QuadWord value equals the lower LONG
value and will be inside a normal range from
0 to 4,294,967,295.
If the upper LONG is non-zero, the 64-bit value
(Destination) equals:
(UpperLong * 4,294,967,296) + LowerLong.

EXAMPLE
Destination may be a structure, or a part of a structure:

struct MyData {
ULONG ULBytesHi;
ULONG ULBytesLo;

FAME_library 2 / 49

};

The function call may look like this:

FAMEAdd64(NULL, BytesForThisUpload, &MyData)

NOTE
The library doesn’t check for overflows. You may also use this function
for calculating signed values, but then you’ll have to interpret the
destination value yourself. For example, if you add 2 to a value
of $FFFFFFFF FFFFFFFF, then the result will be $00000000 00000001.

SEE ALSO

FAMESub64()

1.2 FAME.library/FAMEAllocObject

NAME
FAMEAllocObject -- Allocate a FAME Object

SYNOPSIS
Object = FAMEAllocObject(Type)

D0 D0

APTR FAMEAllocObject(ULONG)

FUNCTION
Allocates and initializes a FAME structure for you, e.g. a struct
FAMEDoorMessage. Initialized means that, for example, an allocated
FAMEDoorMessage object comes with correctly filled System data
(e.g. MN_SIZE).

Using FAME structures is a bit different to other BBS systems.
All public FAME structures must be allocated using this function.
The advantage is that all of these structures may be expanded
with future FAME versions while staying fully downward compatible
with any older door program.
In consequence, FIM doors always have to open FAME.library and
allocate their FAMEDoorMessage via FAMEAllocObject(FOBJ_FAMEDoorMsg),
before MC_DoorStart may be sent using the allocated FAMEDoorMessage.
You must use FAMEFreeObject() to free all FAME Objects. Don’t try
to free it yourself if you want to stay upward compatible.

INPUTS
Type - The Object type you need (e.g. FOBJ_FAMEDoorMsg)

RESULT
Object - Address of the FAME Object or NULL if an error

occured. You may use DOS/IoErr() to see what’s
been wrong. The error codes are defined in
include/libraries/FAME.x. The error code is set
to ERROR_NO_FREE_STORE if the allocation itself
failed due to lack of free memory.

FAME_library 3 / 49

SEE ALSO

FAMEFreeObject()

1.3 FAME.library/FAMEAllocPooled

NAME
FAMEAllocPooled -- Allocate memory from your own pool

SYNOPSIS
Memory = FAMEAllocPooled(byteSize, memAttrs, FAMEMemPool)

D0 D0 D1 A0

APTR FAMEAllocPooled(ULONG, ULONG, APTR)

FUNCTION
Allocate memory from your own memory pool. The pool functions are
written for developers who want to keep their programs compatible
with AmigaOS versions lower than 3.0, and it’s also a good replace-
ment because of some future-planned extra features. Stay tuned. :^)
After creating a memory pool, you may allocate a memory block of
the pool by passing the needed size and memAttrs and the pool where
to take the memory from. But note that using memory pools is only
useful if your program really does lots of allocations and deallo-
cations, for example, if you need to allocate list elements or
such. The pool and puddle size should be at least 20 to 100 times
bigger than the allocations you do later, in order not to allocate
new child pools so often. For allocating smaller things, like
50 or 700 bytes (or such), pool/puddle sizes of 30K (or bigger !)
are okay. So-called "tresh" sizes aren’t needed with FAME pools.

INPUTS
byteSize - Number of bytes to allocate; equals AllocMem()

memAttrs - Currently, only MEMF_CLEAR is supported.

FAMEMemPool - The memory pool you allocated using
FAMECreatePool()

RESULT
Memory - Address of the requested memory block or NULL

if out of memory; equal to AllocMem(). You can
run out of memory if the needed size is bigger than
the remaining main pool space and also bigger than
the PuddleSize you have set up when creating the pool,
or if there is not enough free memory left to allo-
cate a new child pool.
Note that all allocated FAME pool memory blocks are
QuadWord (8-byte) aligned, which is very handy for
DMA transfers on systems equipped with a 68060 CPU.

NOTES
Not-so-important technical note: every allocation needs 16 additional
bytes for MemList linking and for a very high operation speed. That
means that any free memory block (found in a pool by FAME.library)
must be at least RequestedSize+16 bytes in size.
Note this if you manage e.g. pools of 500000 bytes, allocating 20000

FAME_library 4 / 49

bytes each call. This would allow only 24 instead of 25 allocations
before the pool is full (no more memory blocks of 20000 bytes left).
If you’re using such very large memory allocations, use the following
formula to calculate the needed pool and puddle sizes:

NeededPoolSize = (NumberOfAllocationsToFit * (AllocationSize+16))

However, this complex thing is only important if your later memory
allocations have always the *same* and very large size. With smaller
sizes (e.g. 1000 bytes), it doesn’t matter if (e.g.) 900 bytes of a
pool stay unused; with different MemSizes, there is absolutely no
way to ensure that a pool gets always filled up to the very last byte.
For almost all normal cases, this point has no weight anyway. :^)

SEE ALSO

FAMECreatePool()
,
FAMEDeletePool()
,
FAMEFreePooled()
,
FAMEResetPool()

1.4 FAME.library/FAMEAvailExe

NAME
FAMEAvailExe -- Check if Name is an available program

SYNOPSIS
Result = FAMEAvailExe(Name)
D0 D0

LONG FAMEAvailExe(STRPTR Name)

FUNCTION
Checks if Name is an available program, meaning that it can be
found either resident or at the specified path. If Name doesn’t
contain a path part, the current directory is examined for the
file.

INPUTS
Name - Standard AmigaDOS file name. This name may include

a path. FAMEAvailExe checks the resident segment
list for matches. If it wasn’t found, FAME.library
tries to Lock Name. If successful, it checks if the
lock is really a file, and if the file is executable.

RESULT
Result - If NULL (FAE_NOMATCH), Name is neither resident nor

could it be locked in the given path anyway.
Possible results are:

FAE_RESIDENT - Program was found in the segment list (is loaded
resident).

FAME_library 5 / 49

FAE_RESIDENTSYS - Program was found in the system segment list.

FAE_LOADFILE - File was found in the named location and is
executable.

FAE_NOMATCH - NULL; nothing found anyway.

FAE_DATAFILE - File was found, but has no HUNK_HEADER id.

FAE_NOEBIT - File was found and has a hunk header, but it’s
executable protection bit isn’t set.

FAE_DIRECTORY - Name is a directory, not a file.

FAE_ERROR - An I/O error occured while examining/opening/reading
the file. Use IoErr() to see what happened.
This Result tells you that Name is not loaded
resident, and that a dir entry with that name
exists.

NOTES
Result is positive if Name can be launched as a program.
Passing NULL or an empty string is harmless.
Beyond AmigaDOS calls, this function uses 296 bytes of stack space.

1.5 FAME.library/FAMEChrCut

NAME
FAMEChrCut -- cut a string from a search char position

SYNOPSIS
FAMEChrCut(String, CutChar, MaxSearchRange)

A0 A1 D0

STRPTR FAMEChrCut(STRPTR, UBYTE, ULONG)

FUNCTION
Cut a string from the first position of a specified char.
The CutChar will be searched inside the source string; if
a match was found, the right part of the source string gets cut
at the position where the CutChar was found. If nothing was found,
nothing gets changed. This function is not case-sensitive;
german umlauts and other international chars are not considered.

INPUTS
String - The string to truncate
CutChar - The char to search for
MaxSearchRange - Important -the maximum string length to search for

the Char. Normally, this is SizeOf(String).

RESULT (V2)
Result points to the (new) end position of the passed string, no
matter if the CutChar was found or not. Result will point exactly
to the trailing NULL byte of the string.

FAME_library 6 / 49

SEE ALSO

FAMEChrCutCase()
,
FAMEStrCut()

,
FAMEStrCutCase()

1.6 FAME.library/FAMEChrCutCase

NAME
FAMEChrCutCase -- cut a string from a search char position

SYNOPSIS
FAMEChrCutCase(String, CutChar, MaxSearchRange)

A0 A1 D0

STRPTR FAMEChrCutCase(STRPTR, UBYTE, ULONG)

FUNCTION
Cut a string from the first position of a specified char.
The CutChar will be searched inside the source string; if
a match was found, the right part of the source string gets cut
at the position where the CutChar was found. If nothing was found,
nothing gets changed. This function is similar to FAMEChrCut(),
but case-sensitive, and faster.

INPUTS
String - The string to truncate
CutChar - The char to search for
MaxSearchRange - Important -the maximum string length to search for

the Char. Normally, this is SizeOf(String).

RESULT (V2)
Result points to the (new) end position of the passed string, no
matter if the CutChar was found or not. Result will point exactly
to the trailing NULL byte of the string.

SEE ALSO

FAMEChrCut()
,
FAMEStrCut()

,
FAMEStrCutCase()

1.7 FAME.library/FAMECreatePool

NAME
FAMECreatePool -- Create a private memory pool

FAME_library 7 / 49

SYNOPSIS
FAMEMemPool = FAMECreatePool(poolSize, puddleSize, memAttrs, tags)
D0 D0 D1 D2 D3

APTR FAMECreatePool(ULONG poolSize, ULONG puddleSize, ULONG memAttrs, ←↩
struct TagItem *)

FUNCTION
Create an own memory pool. Refer to the

FAMEAllocPooled()
section

of this manual. Own memory pools are very useful if you often allocate
e.g. list elements for bigger lists etc. This reduces memory fragmen-
tation and is also handled much faster, since the memory lists
don’t contain hundreds or thousands of MemEntries which belong to
other tasks. In addition, FAME.library won’t ever protect the pool
memory lists using Forbid(). In future versions, public semaphore-
protected pools may also be possible, where, for example, a task
may allocate an Exec Message from a private pool of the receiver
task.

INPUTS
poolSize - The size of the main memory pool. If you try to

FAMEAllocPooled() more bytes than currently free, the
library will create a "child" pool with a so-called
"puddle" size you specified. PoolSize must be at
least 1024 bytes.

puddleSize - Similar to poolSize. If the remaining main memory
pool cannot hold the requested size, a new child
pool gets allocated and attached to your main pool.
Then, the needed memory gets taken from the new
child pool instead. You may pass NULL for PuddleSize;
FAMEAllocPooled() will fail then instead of attaching
new child pools if the main pool is full.

memAttrs - For allocating pools and child pools, the following
Exec memory attributes are supported:

- MEMF_CHIP
- MEMF_FAST
- MEMF_24BITDMA

MEMF_CLEAR is specified with
FAMEAllocPooled()
.

Tags - Currently unused. Pass NULL or an empty TagList
(pointing to TAG_END).

RESULT
FAMEMemPool - A FAME internal memory pool structure to be passed

to some of the other pool functions, or NULL if
the allocation failed.

SEE ALSO

FAMEAllocPooled()

FAME_library 8 / 49

,
FAMEDeletePool()
,
FAMEFreePooled()
,
FAMEResetPool()

1.8 FAME.library/FAMECutANSI

NAME
FAMECutANSI -- Cut ANSI control sequences off a string (V4).

SYNOPSIS
FAMECutANSI(String, Flags)

A0 D0

STRPTR FAMECutANSI(STRPTR, ULONG)

FUNCTION
This function strips standard ANSI control codes off a given string.

INPUTS
String - The string to convert.
Flags - The passed flags control which kind of ANSI commands

you want to have stripped off. All cut options regard
both ESC and CSI introduced command sequences.
Currently, only one type is supported:

FCAF_STYLECMDS

- this option will remove all ANSI sequences which
control output colours and text style-formatting;
namely: every Escape sequence ending with a lower-
case "m" char.

RESULT
Points to the passed, converted string (same as input).

1.9 FAME.library/FAMEDeletePool

NAME
FAMEDeletePool -- Remove and deallocate a memory pool

SYNOPSIS
FAMEDeletePool(FAMEMemPool)

A1

VOID FAMEDeletePool(APTR)

FUNCTION
Removes a pool together with all it’s child pools. Must be called
before finishing your program in order to undo FAMECreatePool().

FAME_library 9 / 49

All allocated memory areas belonging to this pool get invalid
and don’t need to be freed anymore. This is the fast way to
free everything by one single call.

INPUTS
FAMEMemPool - the structure you got from

FAMECreatePool()
.

SEE ALSO

FAMEAllocPooled()
,
FAMECreatePool()
,
FAMEFreePooled()
,
FAMEResetPool()

1.10 FAME.library/FAMEExecuteDir

NAME
FAMEExecuteDir -- Run all programs in a given directory

SYNOPSIS
Result = FAMEExecuteDir(DirLock, Tags, Args)
D0 D0 A0 D1

APTR FAMEExecuteDir(BPTR DirLock, struct TagItem *, STRPTR Args)

FUNCTION
This function examines the given directory and starts all programs
found in that dir. If a program was successfully started, it’s name
and ReturnCode gets added to the FAMEExecuteDirList structure you’ll
receive as result of this function. This list contains the names and
DOS ReturnCodes of all successfully started programs.
If you’re using the SYS_Asynch Tag, the ReturnCodes are not available
and will be NULL then.
FAMEExecuteDir() uses DOS/SystemTagList() to launch the programs.

INPUTS
DirLock - Lock of the directory to use. This Lock *must* be a

SHARED Lock ! Otherwise, this function can’t find
the name of this Lock. This is a dos.library failure;
just try NameFromLock() with an EXCLUSIVE directory
Lock and you’ll see what i mean.

Tags - DOS Tags for SystemTagList().
Args - Command arguments (optional -you may pass NULL).

RESULT
Result - FAMEExecuteDirList. The result for this function is

not easy to explain. Because of the many possible
errors, FAMEExecuteDir() will not fail if a program
wasn’t succesfully started (e.g. no memory for program
hunks). Instead, the directory gets examined for further

FAME_library 10 / 49

executable files until the directory contains no more
entries.
This function combines Result and IoErr() when returning.
There are four possible things you may get:

Result <> NULL, IoErr = NULL:
Everything went okay, but there may be some
program(s) which weren’t successfully launched.

Result = NULL, IoErr = NULL:
Everything okay, but the directory does not contain
any executable files (no files, no list).

Result = NULL, IoErr <> NULL:
Fatal error (for example, directory had a read error).
Nothing was executed.

Result <> NULL, IoErr <> NULL:
Fatal error, but some programs have been successfully
executed.

Anyway, if the Result was non-zero, it will be a valid
FAMEExecuteDirList structure which must be freed using

FAMEFreeExecuteDirList()
.

NOTES
This function also executes all CLI scripts it finds in the
given directory (script bit must be set), but all of tse scripts
must not have any spaces in their complete path and file name,
because SystemTagList() doesn’t handle quotes with script path/file-
names correctly, while executable files are started within or
without quotes (V39).

Beyond AmigaDOS calls, this function uses approx. 1200 bytes of
stack space.

SEE ALSO

FAMEFreeExecuteDirList()

1.11 FAME.library/FAMEFileCopy

NAME
FAMEFileCopy -- Copy a file to another destination

SYNOPSIS
Result = FAMEFileCopy(SourceFH, DestFH, SrcSize, MaxMem)
D0 D0 D1 D2 D3

LONG FAMEFileCopy(BPTR SourceFH, BPTR DestFH, ULONG SrcSize, ULONG MaxMem)

FUNCTION
Copy a file to another destination. You may specify a maximum copy

FAME_library 11 / 49

buffer size, and the number of bytes to copy. If you set SrcSize to
-1, the whole file gets copied. The passed file handles don’t get
seeked to their start positions before copying is performed.

INPUTS
SourceFH - Filehandle you wish to copy from
DestFH - Filehandle you wish to copy to
SrcSize - Number of bytes to be copied, or -1 for all until EOF.
MaxMem - Maximum copy buffer

RESULT
Result - NULL if everything went okay; otherwise, you may see

what’s been wrong using dos/IoErr(). FAMEFileCopy()
returns standard dos.library errors.

NOTE
For copying files from DOS file names, refer to

FAMEDosMove()
.

1.12 FAME.library/FAMEFillMem

NAME
FAMEFillMem -- fill a larger memory area with a byte value

SYNOPSIS
FAMEFillMem(Buffer, FillByte, Size)

A0 D0 D1

VOID FAMEFillMem(APTR, UBYTE, LONG)

FUNCTION
Fill-up a buffer with a special byte value.
This function is equal to

FAMEMemSet()
, but highly optimized for

bigger memory areas. Use it for filling at least 208 bytes of
memory; with lower sizes,

FAMEMemSet()
works faster.

INPUTS
Buffer - The buffer to be filled. This address MUST be WORD

aligned ! With 68020+ CPUs, FAMEFillMem() gets
faster if a LONG aligned buffer is used.

FillByte - The byte value to fill with
Size - How many bytes to write. This value is limited

to a maximum of 13,631,280 bytes. If you pass a
higher value, nothing will happen.

SEE ALSO

FAMEMemSet()
,

FAME_library 12 / 49

FAMEStrFil()

1.13 FAME.library/FAMEFreeDevInfoList

NAME
FAMEFreeDevInfoList -- free a FAMEDevInfoList

SYNOPSIS
FAMEFreeDevInfoList(FAMEDevInfoList)

A1

VOID FAMEFreeDevInfoList(APTR)

FUNCTION
Frees a FAMEDevInfoList.

SEE ALSO
FAMEGetDevInfoList()

1.14 FAME.library/FAMEFreeDiskSpace

NAME
FAMEFreeDiskSpace -- returns how many bytes are free on a volume.

SYNOPSIS
FAMEFreeDiskSpace(Name)

A0

LONG FAMEFreeDiskSpace(STRPTR)

FUNCTION
Returns the amount of free bytes on the disk where the given file or
drawer belongs to. You may specify any kinda AmigaDOS file or directory
name. This string gets directly passed to DOS/Lock(). If the Lock()
call was successful, the function attempts to return the amount of
free disk space belonging to the Volume where the locked object resides.
For example, you may pass "DH0:"; or you may use a filename, like
"MyData.Big", where the root (the volume) of the current directory
gets examined for the number of free bytes.
By the way: the flexibility of this function is a dos.library feature.

INPUTS
Name - A standard DOS file name.

RESULT
Amount - The amount of free bytes, or -1 if an error occured.

You may use IoErr() to examine the fault.

1.15 FAME.library/FAMEFreeExecuteDirList

FAME_library 13 / 49

NAME
FAMEFreeExecuteDirList -- free a FAMEExecuteDirList

SYNOPSIS
FAMEFreeExecuteDirList(FAMEExecuteDirList)

A1

VOID FAMEFreeExecuteDirList(APTR)

FUNCTION
Frees a FAMEExecuteDirList.

INPUTS
FAMEExecuteDirList - The result of a previous FAMEExecuteDir() call.

SEE ALSO

FAMEExecuteDir()

1.16 FAME.library/FAMEFreeFile

NAME
FAMEFreeFile -- free a FAME File loaded using

FAMELoadFile()
.

SYNOPSIS
FAMEFreeFile(FAMEFile)

A1

VOID FAMEFreeFile(APTR)

FUNCTION
Free a FAME File.

INPUTS
Object - The FAME File to free.

NOTE
This function does not close the file’s FileHandle, if it’s still
open. If you have specified FLFF_KEEPFH with

FAMELoadFile()
, you’ll

have to Close() it yourself before calling FAMEFreeFile().

SEE ALSO

FAMELoadFile()

1.17 FAME.library/FAMEFreeObject

FAME_library 14 / 49

NAME
FAMEFreeObject -- free a FAME Object.

SYNOPSIS
FAMEFreeObject(Object)

A1

VOID FAMEFreeObject(APTR)

FUNCTION
Free a FAME Object.

INPUTS
Object - The FAME Object to free.

SEE ALSO

FAMEAllocObject()

1.18 FAME.library/FAMEFreePooled

NAME
FAMEFreePooled -- free a pool memory area.

SYNOPSIS
FAMEFreePooled(memory)

A1

VOID FAMEFreePooled(APTR)

FUNCTION
Free a pool memory area. The memory gets put back to the pool it was
taken from. If the memory area has any free (unused) neighbours,
theyl get linked together to one large memory block again, which
will reduce pool memory fragmentation. If this was the last memory
area in the current child pool, the whole child pool gets unlinked
and deallocated, too.

INPUTS
memory - Pointer to the memory you got from

FAMEAllocPooled()
.

Do not free one memory area twice -the result may
be a guru.

NOTE
In contrast to the exec.library function, you don’t need to pass
any further arguments except Memory.

SEE ALSO

FAMEAllocPooled()
,
FAMECreatePool()

FAME_library 15 / 49

,
FAMEDeletePool()
,
FAMEResetPool()

1.19 FAME.library/FAMEFSearch

NAME
FAMEFSearch -- Fast search for a match in a file with continous search

SYNOPSIS
Result = FAMEFSearch(SearchString, SearchFH)
D0 A0 D0

LONG FAMEFSearch(STRPTR SearchString, BPTR SearchFH)

FUNCTION
This function searches a string inside a file.
Because of speed reasons, the file buffer is set to 100000 bytes.
This function is *not* case-sensitive, so it’ll find all matches,
no matter which case. German umlauts and other language specific
chars are not considered, so that case matters then.

INPUTS
SearchString - String to search for.
SearchFH - Filehandle of the file where to search the string.

RESULT
Result - The *absolute* position of the string in the file,

no matter what seek position the FH had at the
beginning of the function call. In addition, the
seek position is set directly to the string’s start
position; so you may call this function multiple times
to find all contents by simply seeking one byte forward
and calling FAMEFSearch() again.
If an error occured, or if the string wasn’t found,
you’ll receive -1 as result. Call dos/IoErr() to
get the exact error code. IoErr() will return NULL if
the string wasn’t found. If a real problem occured,
you’ll get a standard DOS error code. This may be
ERROR_NO_FREE_STORE, for example, or a read error.

1.20 FAME.library/FAMEGetDevInfoList

NAME
FAMEGetDevInfoList -- get infos about connected devices

SYNOPSIS
FAMEGetDevInfoList()

APTR FAMEGetDevInfoList(VOID)

FAME_library 16 / 49

FUNCTION
Returns a single linked, sorted FAMEDevInfoList of device information
data. Refer to libraries/FAME.h/.i for detailed information.
After examining all data, this list must be freed using the

FAMEFreeDevInfoList()
function.

SULT
List - FAMEDevInfoList or NULL if an error occured.

On error, you may use IoErr() to see what happened.

SEE ALSO

FAMEFreeDevInfoList()
BUGS

Currently, the FAMEDevInfoList doesn’t get sorted. Still to do.

1.21 FAME.library/FAMEIsNumStr

NAME
FAMEIsNumStr -- check if a string contains numeric digits only.

SYNOPSIS
FAMEIsNumStr(String)

A0

ULONG FAMEIsNumStr(STRPTR String)

FUNCTION
Checks if the given string only contains chars from "0" to "9".

INPUTS
String - the string to check

RESULT
Result - NULL (false) if the string contains any non-numeric digits.

1.22 FAME.library/FAMELoadFile

NAME
FAMELoadFile -- easily load a file into memory.

SYNOPSIS
FAMELoadFile(Name, MemAttr, MaxSize, Flags)

D0 D1 D2 D3

APTR FAMELoadFile(STRPTR Name, ULONG MemAttr, ULONG MaxSize, ULONG Flags)

FUNCTION
With this function you may easily load a file into memory with one

FAME_library 17 / 49

single function call. No more need to handle the many errors which
may occur with Lock(), Open(), Examine(), AllocVec(), Read(), wrong
file types etc.

INPUTS
Name - standard AmigaDOS filename.
MemAttr - exec memory attributes to use for the file buffer.
MaxSize - maximum file size allowed. If you set this to NULL,

FAME.library will try to load the file anyway.
This argument may be useful for writing e.g. BBS
door programs, which (normally) shouldn’t use more
than about 512K of memory to make sure not to hang-up
a BBS due to lack of memory (a poorly written door
running on another node may cause huge problems in
out-of-memory situations).

Flags - aditional flags as follows:

FLFF_KEEPFH
Don’t close the file after loading.
If this flag is set, ffil_FH gets filled with
the file’s FileHandle; otherwise this field
will be empty.
Useful to prevent other tasks from accessing the
file while you may want to examine it’s FileHandle
or if you’re going to do any changes to the file.
The FH’s seek position points to EOF, and the FH
itself is of MODE_OLDFILE. Use ChangeMode() to
change to another access mode.

RESULT
FAMEFile - A FAMEFile structure or NULL if an error occured.

This may be any typical DOS Error Code, or, in
addition, it may be ERROR_NO_FREE_STORE if you
run out of memory, or ERROR_OBJECT_TOO_LARGE if
the file is bigger than the specified MaxSize.
Use IoErr() to see wt happened.

NOTES
Result is also valid if the file size was NULL.

Beyond AmigaDOS I/O, this function uses 296 bytes of Stack space.

SEE ALSO

FAMEFreeFile()

1.23 FAME.library/FAMELoadFilePooled

NAME
FAMELoadFilePooled -- easily load a file into memory using a pool.

SYNOPSIS
FAMELoadFilePooled(Name, MemAttr, MaxSize, Flags, FAMEMemPool)

D0 D1 D2 D3 a0

FAME_library 18 / 49

APTR FAMELoadFilePooled(STRPTR Name, ULONG MemAttr, ULONG MaxSize, ULONG ←↩
Flags, APTR FAMEMemPool)

FUNCTION
With this function you may easily load a file into memory with one
single function call. No more need to handle the many errors which
may occur with Lock(), Open(), Examine(), AllocVec(), Read(), wrong
file types etc.
In contrast to

FAMELoadFile()
, this function allocates the needed

memory from your own memory pool. Also, the resulting structure
(struct FAMEPoolFile) is different to the FAMEFile structure returned
by

FAMELoadFile()
. Here you have got two additional elements at the top

of the structure, which are initialized to NULL and may be freely used
by your program, for example, to link several Pooled Files together
to a single- or double-linked list.

INPUTS
Name - standard AmigaDOS filename.
MemAttr - exec memory attributes to use for the file buffer,

ass supported by
FAMEAllocPooled()
.

MaxSize - maximum file size allowed. If you set this to NULL,
FAME.library will try to load the file anyway.
This argument may be useful for writing e.g. BBS
door programs, which (normally) shouldn’t use more
than about 512K of memory to make sure not to hang-up
a BBS due to lack of memory (a poorly written door
running on another node may cause huge problems in
out-of-memory situations).

Hint: MaxSize should not be bigger than the Pool’s
PuddleSize.

Flags - aditional flags as follows:

FLFF_KEEPFH
Don’t close the file after loading.
If this flag is set, fpof_FH gets filled with
the file’s FileHandle; otherwise this field
will be empty.
Useful to prevent other tasks from accessing the
file while you may want to examine it’s FileHandle
or if you’re going to do any changes to the file.
The FH’s seek position points to EOF, and the FH
itself is of MODE_OLDFILE. Use ChangeMode() to
change to another access mode.

FAMEMemPool - a FAME Memory Pool where to take the needed
memory. Refer to FAMECreatePool() for more
details.

RESULT

FAME_library 19 / 49

FAMEPoolFile - A FAMEPoolFile structure or NULL if an error
occured. This may be any typical DOS Error Code,
or, in addition, it may be ERROR_NO_FREE_STORE
if you run out of memory, or ERROR_OBJECT_TOO_LARGE
if the file is bigger than the specified MaxSize.
Use IoErr() to see what happened.

NOTES
Result is also valid if the file size was NULL.

Freeing a FAMEPoolFile is done by a
FAMEFreePooled()
call, or

by calling
FAMEDeletePool()
which frees the Pool and all loaded

files with one single call. Do not try to free a FAMEPoolFile using
FAMEFreeFile() !

Beyond AmigaDOS I/O, this function uses 296 bytes of Stack space.

1.24 FAME.library/FAMEMemSet

NAME
FAMEMemSet -- Fill a buffer with a char

SYNOPSIS
FAMEMemSet(FillBuffer, FillChar, NumberOfChars)

A0 D0 D1

VOID FAMEMemSet(APTR FillBuffer, UBYTE FillChar, WORD NumberOfChars)

FUNCTION
Fill up the buffer with a char up to NumberOfChars. This function
is equal to

FAMEStrFil()
, but doesn’t add a null byte at the end.

As you see, many functions are somewhat trivial, but C programmers may
have use of it while going without the ANSI C functions, making the
executables much smaller.
Note that if you want to fill large buffers, you should use

FAMEFillMem()
instead, because it’s highly optimizd for bigger

buffers.

INPUTS
FillBuffer - The buffer to fill up.
FillChar - The fill character.
NumberOfChars - The number of characters to write (WORD size !).

SEE ALSO

FAMEFillMem()
,

FAME_library 20 / 49

FAMEStrFil()

1.25 FAME.library/FAMEDosMove

NAME
FAMEDosMove -- move a file from one directory to another

SYNOPSIS
FAMEDosMove(Src, Dest, MaxBuf, Flags)

D0 D1 D2 D3

ULONG FAMEDosMove(STRPTR Src, STRPTR Dest, ULONG MaxBuf, ULONG Flags)

FUNCTION
Move (or copy) the source file to the given destination, which may
be a directoy or a full (new) file name. When moving, FAMEDosMove()
first tries to rename.

INPUTS
Src - Source file with full path.
Dest - Destination path, may include the new file name itself.
MaxBuf - Maximum copy buffer size if file must be copied. Try

using a buffer of at least 256-512K in order to perform
high-speed copies.

Flags - FDMF_NODELETE (V2)

- do not delete source (copy instead of moving)

- FDMF_KEEPDATA (V2)

- if the file wasn’t moved by renaming, FAMEDosMove() will
keep the source file comment and protection bits (except
the archive bit).

RESULT
Result - Success (Boolean). On failure, IoErr() helps to find out

about what went wrong.

NOTES
Beyond AmigaDOS calls, this function uses 832 bytes of stack space.

Currently, this function does not copy directories anyway.

1.26 FAME.library/FAMENum64ToStr

NAME
FAMENum64ToStr -- convert a 64-bit value to a decimal string (V3)

SYNOPSIS
FAMENum64ToStr(ValueHi, ValueLo, Flags, BufSize, Buffer)

d0 d1 d2 d3 a0

FAME_library 21 / 49

LONG FAMENum64ToStr(ULONG, ULONG, ULONG, ULONG, STRPTR)

FUNCTION
This function converts a 64-bit numeric value to a decimal string.
FAMENum64ToStr() is compatible to

FAMENumToStr()
, except that the

value to convert consists of two longwords, and hex or binary
conversion is not included since 64-bit hex/binary strings may be
created by two

FAMENumToStr()
calls.

INPUTS
ValueHi - The upper 32 bits of the value to convert
ValueLo - The lower 32 bits of the value to convert
BufSize - The maximum output buffer size.

If BufSize is NULL, FAME.library assumes that the output
buffer is big enough anyway. Refer to "Table Of Buffer
Sizes" to see how big the destination string buffer should
be. The maximum needed buffer size is 29 bytes including
the trailing NULL byte.
If the output string doesn’t fit into the Buffer, RESULT
will be -1 and the output buffer won’t get touched anyway.
It’s up to you about what to do if the string doesn’t fit
into the buffer, e.g. using strings like ">1 Bio." or such.

Flags - Options as follows. All flags have the same names as the
ones used for

FAMENumToStr()
.

FNSF_LEADINGZEROES - Output string with leading zeroes. This option
overrides the text formatting flags.

FNSF_LEADINGSIGN - Add a leading arithmetic symbol ("#").
This symbol is added as a prefix, placed directly
left of the leftmost digit.
Remember that this option raises the needed output
buffer size. See "Table Of Buffer Sizes" below.

FNSF_RIGHTFORMAT - String gets right-formatted. The number of
leading spaces depends on the buffer size used.
Refer to "Table Of Buffer Sizes" below.

FNSF_LEFTFORMAT - Buffer gets filled up with spaces behind the
numeric string. Refer to "Table Of Buffer
Sizes" below.

FNSF_CENTERFORMAT - The numeric string gets centered inside the
output buffer. Refer to "Table Of Buffer Sizes"
below.

FNSF_TENDLEFT - This flag works together with FNSF_CENTERFORMAT.
Normally, this function tends to place the center
formatted strings a bit more right, because half

FAME_library 22 / 49

space chars cannot be printed. With this flag you
may change this behaviour to put the strings more
left.

FNSF_GROUPING - Add group separators to the string.
Example: Output "42658313" as "42,658,313".
Remember that this option raises the needed output
buffer size. See "Table Of Buffer Sizes" below.

FNSF_NUMLOCALE - If the FNSF_GROUPING flag is set, with this option
the current Locale numeric group separator is used
instead of the default group separator char.

FNSF_MONLOCALE - If the FNSF_GROUPING flag is set, with this Flag
the current Locale monetary group separator is
used instead of the default group separator char.

FNSF_SIGNED - Interpret Value as signed number. BufSize always
raises by one additional byte. Negative numbers
get a "-" prefix, positive ones get a " " prefix.

FNSF_PLUSSIGN - If FNSF_SIGNED is set, positive numbers get a "+"
sign added, instead of the default " " char.

FNSF_SWAPSIGNS - If both FNSF_SIGNED and FNSF_LEADINGSIGN flags
are set, this option swaps the two chars from
"-#" to "#-".

RESULT
Result - NULL if everything went ok, or -1 if the string didn’t fit

into the buffer (this error may only occur if BufSize was
non-zero).

NOTES
Same rules as with

FAMENumToStr()
.

Table Of Buffer Sizes

The following table shows up the minimum output buffer sizes needed
to convert any Value without the event of a buffer overflow.
This is useful if you want position-formatted strings.

All buffer sizes include the trailing NULL byte.

Type | Pure | With Leading Symbol | With Separators | With Both
------+------+---------------------+-----------------+----------
LONG | 22 | 23 | 28 | 29

ULONG | 21 | 22 | 27 | 28
--

SEE ALSO
Locale

Notes

FAME_library 23 / 49

,
FAMENumToStr()
.

1.27 FAME.library/FAMENumToStr

NAME
FAMENumToStr -- convert a numeric value to a string

SYNOPSIS
FAMENumToStr(Value, Flags, BufSize, Buffer)

d0 d1 d2 a0

LONG FAMENumToStr(ULONG, ULONG, ULONG, STRPTR)

FUNCTION
This function converts a numeric value to either a decimal, hex,
or binary string. This function is useful in situations where a
standalone AmigaOS FormatString isn’t flexible enough.
The converted string is terminated by a NULL byte. Keep this in
mind -never set BufSize to 1 ! It must always be either NULL or
greater than 1 !

INPUTS
Value - The numeric value to convert
BufSize - The maximum output buffer size.

If BufSize is NULL, FAME.library assumes that the output
buffer is big enough anyway. Refer to "Table Of Buffer
Sizes" below to see how many bytes are needed.
If the output string doesn’t fit into the Buffer, RESULT
will be -1 and the output buffer won’t get touched anyway.
It’s up to you about what to do if the string doesn’t fit
into the buffer, e.g. using strings like ">1 Mio." or such.

Flags - Options as follows:
(same usage as, for example, the exec memory attributes)

FNSF_HEX - Convert Value to hex string (default: decimal)

FNSF_BIN - Convert Value to binary string (default: decimal)

FNSF_WORD - Value has WORD size (default: LONG)

FNSF_BYTE - Value has BYTE size (default: LONG)

FNSF_LEADINGZEROES - Output string with leading zeroes. Of course,
this option overrides the text formatting flags.

FNSF_LEADINGSIGN - Add a leading arithmetic symbol, depending
on the stated numeric system:
- Decimal strings get a "#" prefix
- Hex strings get a "$" prefix
- Binary strings get a "%" prefix
The prefix is always placed directly left of the
leftmost digit.

FAME_library 24 / 49

Remember that this option raises the needed output
buffer size. See "Table Of Buffer Sizes" below.

FNSF_RIGHTFORMAT - String gets right-formatted. The number of
leading spaces depends on the numeric system,
the Value size (BYTE/WORD/LONG) and the buffer
size. Refer to "Table Of Buffer Sizes" below.

FNSF_LEFTFORMAT - Buffer gets filled up with spaces behind the
numeric string. Refer to "Table Of Buffer
Sizes" below.

FNSF_CENTERFORMAT - The numeric string gets centered inside the
output buffer. Refer to "Table Of Buffer Sizes"
below.

FNSF_TENDLEFT - This flag works together with FNSF_CENTERFORMAT.
Normally, this function tends to place the center
formatted strings a bit more right, because half
space chars cannot be printed. With this flag you
may change this behaviour to put the strings more
left.

FNSF_LOWERCASE - Output hex chars in lower case

FNSF_GROUPING - Add group separators to the string. Example:
Output (decimal) "42658313" as "42,658,313".
Remember that this option raises the needed output
buffer size. See "Table Of Buffer Sizes" below.

FNSF_NUMLOCALE - If the FNSF_GROUPING flag is set, with this option
the current Locale numeric group separator is used
instead of the default group separator char.
This option only affects decimal strings.

FNSF_MONLOCALE - If the FNSF_GROUPING flag is set, with this Flag
the current Locale monetary group separator is
used instead of the default group separator char.
This option only affects decimal strings.

FNSF_SIGNED - Interpret Value as signed number. BufSize always
raises by one additional byte. Negative numbers
get a "-" prefix, positive ones get a " " prefix.

FNSF_PLUSSIGN - If FNSF_SIGNED is set, positive numbers get a "+"
sign added, instead of the default " " char.

FNSF_SWAPSIGNS - If both FNSF_SIGNED and FNSF_LEADINGSIGN flags are
set, this option swaps the two chars from (e.g.)
"-$" to "$-".

RESULT
Result - NULL if everything went ok, or -1 if the string didn’t fit

into the buffer (this error may only occur if BufSize was
non-zero).

NOTES

FAME_library 25 / 49

If you like system crashes, try setting undefined flags.. :^)
Also, do *not* use senseless flag combinations. For example, don’t
use FNSF_WORD together with FNSF_BYTE.

Formatting and leading zeroes: the number of spaces/zeroes depends
on the given BufSize, but the whole string is never longer than the
maximum needed number of chars. If you convert a decimal WORD value
using a BufSize of 500 bytes, the string will only contain 5 digits,
zeroes or spaces plus optional arithmetic sign and group separator,
because the result cannot have more than 5 digits (the highest word
value is 65535).

Grouping: beyond the group separator chars, other Locale Grouping
preferences are ignored in order to keep the used buffer sizes fixed.
Groups of decimal characters are always 3 chars in size. Groups are
separated from the rightmost digit to the left side, e.g. "37,653",
"1,986,221" or "298,344".
Hex strings get split into two equal groups.
Binary numbers get split into groups of 8 chars.
However, strings of BYTE size never contain any group separators,
no matter which numeric system is used.
Default group separarator for decimal strings is the "," char.
For hexadecimal, a Space character (" ") is used; and the dot (".")
is used with binary.
the FNSF_USExxxLOCALE flags have no effect with hex or binary strings.

Table Of Buffer Sizes

The following table shows up the minimum output buffer sizes needed
to convert any Value without the event of a buffer overflow.

All buffer sizes include the trailing NULL byte.

String type | Pure | With Leading Symbol | With Separators | With Both
-------------+------+---------------------+-----------------+----------
Decimal LONG | 11 | 12 | 14 | 15

ULONG | 12 | 13 | 15 | 16
WORD | 6 | 7 | 7 | 8
UWORD | 7 | 8 | 8 | 9
BYTE | 4 | 5 | 4 | 5
UBYTE | 5 | 6 | 5 | 6

-------------+------+---------------------+-----------------+----------
Hex LONG | 9 | 10 | 10 | 11

ULONG | 10 | 11 | 11 | 12
WORD | 5 | 6 | 6 | 7
UWORD | 6 | 7 | 7 | 8
BYTE | 3 | 4 | 3 | 4
UBYTE | 4 | 5 | 4 | 5

-------------+------+---------------------+----------------------------
Binary LONG | 33 | 34 | 36 | 37

ULONG | 33 | 34 | 36 | 37
WORD | 17 | 18 | 18 | 19
UWORD | 17 | 18 | 18 | 19
BYTE | 9 | 10 | 9 | 10
UBYTE | 9 | 10 | 9 | 10

FAME_library 26 / 49

Signed binary numbers don’t need an additional byte, because the
highest bit doesn’t need to get displayed anymore; if you pass 255 as
Value and FNSF_BINARY and FNSF_SIGNED as Flags, you’ll get "-0000001"
as result, instead of "11111111". Signed binary is rarely used..

This function description may be somewhat confusing, all in all.
I only suggest to try it out. Try several values in hex, binary
or decimal format, and do not use any additional flags first. Then,
add some flags (one after each other), and look what happens.
In general, it may be helpful to know that "BufSize" is just a little
bonus for easy text formatting. Let’s have an example: you want to
convert several (unknown) decimal values, which are always inside a
range from 0 to 99999, and you want all output strings right-formatted,
written into a box (or gadget) of 5 chars width. You’ll have to use
LONG conversion because 99999 is larger than a WORD. Now the library
function will always insert at least five zeroes or spaces on the
left side of the string, due to the fact that LONGs may have up to 10
decimal digits. This could be too much. Now you may limit BufSize to
5 (+ null byte = 6) bytes, and the problem is solved. But, whenever a
Value is larger than 99999, a sixth digit was needed anyway. In this
case, the buffer overflow error (ReturnCode = -1) would occur.
But since you’re sure about that the Value is never bigger than 99999,
there should be no sweat about anyway.. :^)
For most standard applications, simply setting BufSize to NULL while
using a buffer of at least 37 bytes is a practical method.

Hint: try combining FAMENumToStr() with RawDoFmt() by converting the
needed values to size formatted strings which get inserted into a
complete AmigaOS FormatString using the "%s" command. For example:
"Address: %s, Offset: %s, File Size: %s, Year: %s", and so on (nice
for data tables, statistics etc.).

SEE ALSO
Locale

Notes
,
FAMENum64ToStr()
.

1.28 FAME.library/FAMEOverallBytes

NAME
FAMEOverallBytes -- get an overall amount of free harddisk space

SYNOPSIS
FAMEOverallBytes(UlPathList, MinFreeMB)

A0 D0

ULONG FAMEOverallBytes(APTR UlPathList, ULONG MinFreeMB)

FUNCTION
This function scans a list of given directories for the overall

FAME_library 27 / 49

amount of free bytes.

INPUTS
UlPathList - a FAMEUlPathList structure containing all pathes

to be examined. Each volume is only added once
to the result, meaning that several pathes
belonging to the same volume are not counted
several times.

MinFreeMB - a value you may specify, which gets subtracted from
every directory’s free bytes amount. This value is
used by doors which handle a sysop-defined minimum
bytes which shall always be free in any upload path.

RESULT
FreeBytes - The overall amount of free bytes (-MinFreeMB) of all

given directories.

1.29 FAME.library/FAMEPostFile

NAME
FAMEPostFile -- post an (uploaded) file to a FAME conference

SYNOPSIS
FAMEPostFile(Name, ULPathList, MinFreeMB, BufSize, Flags)

D0 A0 D1 D2 D3

APTR FAMEPostFile(STRPTR Name, APTR ULPathList, ULONG MinFreeMB, ULONG ←↩
BufSize, ULONG Flags)

FUNCTION
Post a file to a FAME BBS conference, where FAME.library moves (or
copies) the file to one of a list of destination pathes as given as
ULPathList argument. File comments and protection bits may be copied
from the source file (V2).

INPUTS
Name - Full file name

ULPathList - a FAMEUlPathList structure which contains several
allowed upload directories, where FAME.library may
move the file to (FAME.library will use the first
suitable path it finds). The FAMEUlPathList structure
can be found in include/libraries/FAME.h(.i).
Passing a NULL pointer is harmless (V2).

MinFreeMB - The minimum Amount of MegaBytes available in the
destination directory wherever the file may go.
If the amount of free space plus src file size is
smaller than the passed MinFreeMB value, the actual
directory is skipped and FAME.library tries to use
the next one in the list. If nothing was found,
FAME.library returns NULL and sets IoErr to
ERROR_DISK_FULL. This argument counts in MegaBytes,
not in bytes.

FAME_library 28 / 49

BufSize - Maximum copy buffer size to use if the file can’t be
moved by renaming.

Flags - Several Flags, as there are:

FPFF_NODELETE

- Don’t delete source file anyway. This flag
forces FAME.library always to copy the file,
even if it could simply be moved (renamed).

FPFF_REPLACE

- File gets always posted to the first
suitable directory (with enough free
space), no matter if a file with the same
name already exists in any of the given
directories. All existing files with same
name get deleted if posting was successful
(destination directory cleanup).
If one of any additionally existing files
coldn’t be deleted, FAME.library will not
fail, but it will set IoErr to ERROR_DIREC-
TORY_NOT_EMPTY in order to tell you that
posting the file was completely successful;
only the following directory cleanup failed.

FPFF_CHECKONLY

- Only test if the file already exists in any
of the given directories; nothing gets
written or deleted anyway.

FPFF_KEEPDATA (V2)

- if the file wasn’t moved by renaming,
FAMEDosMove() will keep the source file
comment and protection bits (except A,R,D
because BBS files better have R and D set)

RESULT
Destination - The passed FAMEUlPathList structure with RESULT

pointing to the list element which contains the
name of the directory where the destination file
was posted to. So you may easily check this out.

RESULT is NULL if an AmigaDOS Error occured, if
there was no directory with enough free space left
(ERROR_DISK_FULL), or if the destination file
already exists in one of the given directories
(ERROR_OBJECT_EXISTS). Whatever happens: if
RESULT = NULL, use IoErr() to get the fault.

If FPFF_CHECKONLY was set, RESULT will be the
list element containing the path the file was
found, or NULL if the file doesn’t exist anywhere.

FAME_library 29 / 49

With the CHECKONLY flag, RESULT does not say
anything about if there is any path with enough
free space to store the file. Don’t mischange..

NOTES
You may combine FPFF_REPLACE and FPFF_NODELETE, but you shouldn’t
ever combine FPFF_CHECKONLY with FPFF_REPLACE or FPFF_NODELETE.

Beyond AmigaDOS calls, this function uses 1400 bytes of stack space.

1.30 FAME.library/FAMEResetPool

NAME
FAMEResetPool -- reset a pool and free all it’s childs

SYNOPSIS
FAMEResetPool(FAMEMemPool)

A1

VOID FAMEResetPool(APTR)

FUNCTION
This function frees all child pools and resets the main pool.
Useful to free all allocated memory areas (including those which
have been part of the main pool) with one single call while keeping
the main pool available for further allocations. This saves an addi-
tional FAMECreatePool() call and reduces memory fragmentation.

INPUTS
FAMEMemPool - the pool you want to reset

SEE ALSO

FAMEAllocPooled()
,
FAMECreatePool()
,
FAMEDeletePool()
,
FAMEFreePooled()

1.31 FAME.library/FAMEReverseLong

NAME
FAMEReverseLong -- reverse byte order of a long sized value

SYNOPSIS
FAMEReverseLong(Value)

d0

ULONG FAMEReverseLong(ULONG Value)

FAME_library 30 / 49

FUNCTION
Reverses the low/high byte order of the given Value.
The two reverse functions have been written for non-asm programmers
who must handle PC data structures containing WORD or LONG data
(may be also pointers). 80x86 CPUs (and some other CPUs, like the
C64’s 6510) store data in reversed order. A 680x0 value of $12345678
equals $78563412 in 80x86 format.

INPUTS
Value - The value to convert

RESULT
NewValue - The converted (reversed) value

NOTES
Except d0 (Result), this function is guaranteed to preserve all
registers.
Because Inputs and Result are defined as ULONG, C language programmers
may need type casting with e.g. APTR type values.

SEE ALSO

FAMEReverseWord()

1.32 FAME.library/FAMEReverseWord

NAME
FAMEReverseWord -- reverse byte order of a word sized value

SYNOPSIS
FAMEReverseWord(Value)

d0

UWORD FAMEReverseWord(UWORD Value)

FUNCTION
Reverses the low/high byte order of the given Value.
The two reverse functions have been written for non-asm programmers
who must handle PC data structures containing WORD or LONG data
(may be also pointers). 80x86 CPUs (and some other CPUs, like the
C64’s 6510) store data in reversed order. A 680x0 value of $1234
equals $3412 in 80x86 format.

INPUTS
Value - The value to convert

RESULT
NewValue - The converted (reversed) value

NOTES
Except d0 (Result), this function is guaranteed to preserve all
registers.
Because Inputs and Result are defined as UWORD, C language programmers
may need type casting with, for example, SHORT type values.

FAME_library 31 / 49

SEE ALSO

FAMEReverseLong()

1.33 FAME.library/FAMEStackReport

NAME
FAMEStackReport -- Retrieve the remaining stack space of your program

SYNOPSIS
AvailStack = FAMEStackReport()
D0

LONG FAMEStackReport(VOID)

FUNCTION
Tells you about how many bytes are left on your stack. This function
is used for debugging, and it can be used to make a program more
safe against stack overflowing. But note that permanent stack checks
may slow down your program.

RESULT
AvailStack - The remaining stack size.

1.34 FAME.library/FAMEStartECTimer

NAME
FAMEStartECTimer -- Start an E-Clock time measure

SYNOPSIS
FAMEStartECTimer(Dest)

A0

VOID FAMEStartECTimer(struct timeval *dest)

FUNCTION
This function fills a timeval structure with the current E-Clock
time. Together with

FAMEStopECTimer()
, you may perform easy time

measuring.
After calling this function, you may call

FAMEStopECTimer()
,

passing the same timeval structure, where the time difference between
the old structure contents and the new E-Clock time gets written back.

INPUTS
Dest - A timeval structure. This structure gets filled

with the current E-Clock values.

NOTES

FAME_library 32 / 49

There is *no* need to have any calls to
FAMEStopECTimer()
. Also,

you don’t need to free anything. You may call this function multiple
times using different timeval structures.

This function preserves A0.

SEE ALSO

FAMEStopECTimer()

1.35 FAME.library/FAMEStopECTimer

NAME
FAMEStopECTimer -- Stop an E-Clock time measure

SYNOPSIS
FAMEStopECTimer(Dest)

A0

VOID FAMEStopECTimer(struct timeval *dest)

FUNCTION
This function stops a

FAMEStartECTimer()
time measuring operation.

To be exact, this function does nothing more than reading the current
E-Clock again and then subtracting the result from the passed timeval
structure.

INPUTS
Dest - A timeval structure (the same structure you already

passed to
FAMEStartECTimer()
.

This structure gets filled with the time difference
between both FAMEStartECTimer() and FAMEStopECTimer()
calls.

NOTE
This function preserves A0 and A1, while D0 (Lo) and D1 (Hi) contain
the results of the second E-Clock measure (not the time difference).

SEE ALSO

FAMEStartECTimer()

1.36 FAME.library/FAMEStrChr

NAME
FAMEStrChr -- Find a character in a string

FAME_library 33 / 49

SYNOPSIS
NewString = FAMEStrChr(Source, MatchChar)
D0 A0 D0

STRPTR FAMEStrChr(STRPTR Source, UBYTE MatchChar)

FUNCTION
Find a character in a string.
If a match is found, NewString will point to the first match inside
the string. If no match was found, RESULT will be NULL.

INPUTS
Source - The source string.
MatchChar - The char to search for.

RESULT
NewString - The updated string pointer.

SEE ALSO

FAMEStrChrCase()
,
FAMEStrStr()

,
FAMEStrStrCase()

1.37 FAME.library/FAMEStrChrCase

NAME
FAMEStrChrCase -- Find a character in a string

SYNOPSIS
NewString = FAMEStrChrCase(Source, MatchChar)
D0 A0 D0

STRPTR FAMEStrChrCase(STRPTR Source, UBYTE MatchChar)

FUNCTION
Find a character in a string.
If a match is found, NewString will point to the first match inside
the string. If no match was found, RESULT will be NULL.

INPUTS
Source - The source string.
MatchChar - The char to search for.

RESULT
NewString - The updated string pointer.

SEE ALSO

FAMEStrChr()
,
FAMEStrStr()

,

FAME_library 34 / 49

FAMEStrStrCase()

1.38 FAME.library/FAMEStrCopy

NAME
FAMEStrCopy -- Copy a string to another until MaxLen has been reached

SYNOPSIS
NewString = FAMEStrCopy(Source, Destination, MaxLen)
D0 A0 A1 D0

STRPTR FAMEStrCopy(STRPTR Source, STRPTR Destination, UWORD MaxLen)

FUNCTION
Copy a string into another with a limit of MaxLen.
FAMEStrCopy stops if a NULL byte was found, or if MaxLen is
reached. In this case, a NULL byte gets added, so remember that
the size of your destination buffer must be at least MaxLen+1 bytes.

INPUTS
Source - The source string.
Destination - The destination string.
MaxLen - Maximum string copy size.

RESULT
NewString - The same as Destination. Ask some C coders why. :^)

1.39 FAME.library/FAMEStrCut

NAME
FAMEStrCut -- cut a string from a search string position

SYNOPSIS
FAMEStrCut(String, CutString, MaxSearchRange)

A0 A1 D0

STRPTR FAMEStrCut(STRPTR, STRPTR, ULONG)

FUNCTION
Cut a string from the first position of a part string.
The part string will be searched inside the source string; if
a match was found, the right part of the source string gets cut
at the start position of the search string. If nothing was found,
nothing gets changed. This function is not case-sensitive;
german umlauts and other international chars are not considered.

INPUTS
String - The string to truncate
CutString - The string part to search for. The length of the

CutString is limited to 512-1 bytes.
MaxSearchRange - Important -the maximum string length to search for

FAME_library 35 / 49

the CutString. Normally, this is SizeOf(String).

RESULT (V2)
Result points to the (new) end position of the passed string, no
matter if the CutString was found or not. Result will point exactly
to the trailing NULL byte of the string.

NOTE
This function uses 528 Bytes of Stack space.

SEE ALSO

FAMEStrCutCase()
,
FAMEChrCut()

,
FAMEChrCutCase()

1.40 FAME.library/FAMEStrCutCase

NAME
FAMEStrCutCase -- cut a string from a search string position

SYNOPSIS
FAMEStrCutCase(String, CutString, MaxSearchRange)

A0 A1 D0

STRPTR FAMEStrCutCase(STRPTR, STRPTR, ULONG)

FUNCTION
Cut a string from the first position of a part string.
The part string will be searched inside the source string; if
a match was found, the right part of the source string gets cut
at the start position of the search string. If nothing was found,
nothing gets changed. This function is equal to

FAMEStrCut()
,

but case-sensitive and also faster.

INPUTS
String - The string to truncate
CutString - The string part to search for
MaxSearchRange - Important -the maximum string length to search for

the CutString. Normally, this is SizeOf(String).

RESULT (V2)
Result points to the (new) end position of the passed string, no
matter if the CutString was found or not. Result will point exactly
to the trailing NULL byte of the string.

SEE ALSO

FAMEStrCut()
,
FAMEChrCut()

FAME_library 36 / 49

,
FAMEChrCutCase()

1.41 FAME.library/FAMEStrFil

NAME
FAMEStrFil -- Fill string buffer with a char

SYNOPSIS
FAMEStrFil(FillBuffer, FillChar, NumberOfChars)

A0 D0 D1

STRPTR FAMEStrFil(STRPTR FillBuffer, UBYTE FillChar, WORD NumberOfChars)

FUNCTION
Fill up the buffer with a char up to NumberOfChars. After that,
a NULL byte gets added to close the string.

INPUTS
FillBuffer - The buffer to fill up.
FillChar - The fill character.
NumberOfChars - The number of characters to write (WORD size !).

RESULT (V2)
Points to the trailing NULL byte at the end of the String.

SEE ALSO

FAMEFillMem()
,
FAMEMemSet()

1.42 FAME.library/FAMEStrMid

NAME
FAMEStrMid -- Return a substring from a string

SYNOPSIS
Result = FAMEStrMid(Source, Destination, StartPos, NumberOfChars)
D0 A0 A1 D1 D0

LONG FAMEStrMid(STRPTR Source, STRPTR Destination, LONG StartPos, LONG ←↩
NumberOfChars)

FUNCTION
FAMEStrMid() writes a string part of the source string to the destina-
tion string, beginning at character position StartPos, and with a
length of NumberOfChars. If NumberOfChars is higher than the remaining
bytes of the source string, the rest of the string is copied to the
the destination string, not more. If you want to copy the right part
of a string, you may specify -1 for NumberOfChars.

FAME_library 37 / 49

The destination string gets null-terminated.

INPUTS
Source - The source string.
Destination - The destination string.
StartPos - Start position for copying.
NumberOfChars - Number of chars to copy.

RESULT
Result - -1 if StartPos is beyond Source, else NULL.

1.43 FAME.library/FAMEStrStr

NAME
FAMEStrStr -- Find a string in a string

SYNOPSIS
NewString = FAMEStrStr(Source, MatchString)
D0 A0 A1

STRPTR FAMEStrStr(STRPTR Source, STRPTR MatchString)

FUNCTION
Find a string in a string.
If a match is found, NewString will be the updated string pointer
pointing to the first match. If no match can be found, NewString
will be NULL.

INPUTS
Source - The source string.
Matchstring - The string which FAMEStrStr is been searching for.

RESULT
NewString - A pointer to the string position of the search string,

or NULL if nothing was found.

NOTE
Both strings don’t get modified anyway.

SEE ALSO

FAMEStrStrCase()
,
FAMEStrChr()

,
FAMEStrChrCase()

1.44 FAME.library/FAMEStrStrCase

NAME
FAMEStrStrCase -- Find a string in a string

FAME_library 38 / 49

SYNOPSIS
NewString = FAMEStrStrCase(Source, MatchString)
D0 A0 A1

STRPTR FAMEStrStrCase(STRPTR Source, STRPTR MatchString)

FUNCTION
Find a string in a string. If a match is found, NewString will be
the updated string pointer to the first match. If no match can be
found, NewString will be NULL.

INPUTS
Source - The source string.
Matchstring - The string which FAMEStrStrCase is been searching for.

RESULT
NewString - A pointer to the string position of the search string,

or NULL if nothing was found.

SEE ALSO

FAMEStrStr()
,
FAMEStrChr()

,
FAMEStrChrCase()

1.45 FAME.library/FAMEStrToLower

NAME
FAMEStrToLower -- lower-case a string

SYNOPSIS
String = FAMEStrToLower(String)
D0 A0

STRPTR FAMEStrToLower(STRPTR String)

FUNCTION
Lower-case a string. Result is the same string you passed.

German umlauts and other international chars are not considered.

INPUTS
String - The string to convert.

RESULT
String - A pointer to the converted string (same as input).

SEE ALSO

FAMEStrToUpper()

FAME_library 39 / 49

1.46 FAME.library/FAMEStrToUpper

NAME
FAMEStrToUpper -- upper-case a string

SYNOPSIS
String = FAMEStrToUpper(String)
D0 A0

STRPTR FAMEStrToUpper(STRPTR String)

FUNCTION
Upper-case a string. Result is the same string you passed.
German umlauts and other international chars are not considered.

INPUTS
String - The string to convert.

RESULT
String - A pointer to the converted string (same as input).

SEE ALSO

FAMEStrToLower()

1.47 FAME.library/FAMESub64

NAME
FAMESub64 -- perform a QuadWord (64-bit) subtraction

SYNOPSIS
FAMESub64(SrcHi, SrcLo, Destination)

d0 d1 a0

VOID FAMESub64(ULONG, ULONG, APTR)

FUNCTION
Subtracts an unsigned 8-byte value (SrcLo/SrcHi) from a QuadWord
at a specified destination address.

INPUTS
SrcHi - The upper LONG of the 64-bit value to subtract.

If you want to subtract a LONG from the destination
value (instead of a QuadWord), set SrcHi to NULL
and pass the LONG to be subtracted in SrcLo.

SrcLo - The lower LONG of the 64-bit value to subtract.

Destination - A pointer to a memory address of 8 bytes
in size where SrcHi and SrcLo get subtracted from.
These 8 bytes build one QuadWord. If the first
half of this area (the first LONG) is NULL,
the QuadWord value equals the lower LONG

FAME_library 40 / 49

value and will be inside a normal range from
0 to 4,294,967,295.
If the upper LONG inon-zero, the 64-bit value
(Destination) equals:
(UpperLong * 4,294,967,296) + LowerLong.

EXAMPLE
Destination may be a structure, or a part of a structure:

struct MyData {
ULONG ULBytesHi;
ULONG ULBytesLo;
};

The function call may look lik "FAe this:

FAMEAdd64(NULL, BytesForThisUpload, MyData)

NOTE
The library doesn’t check for overflows. You may also use this function
for calculating signed values, but then you’ll have to interpret the
destination value yourself. For example, if you subtract 1 from a
value of 0, then the result will be $FFFFFFFF FFFFFFFF.

SEE ALSO

FAMEAdd64()

1.48 FAME.library/FAMESwapRedWhite

NAME
FAMESwapRedWhite -- Swap red and white ANSI color codes in a string

SYNOPSIS
FAMESwapRedWhite(String)

A0

STRPTR FAMESwapRedWhite(STRPTR)

FUNCTION
Swap all ANSI red/white colour commands in a string. The passed string
gets converted. No Result.
Normally, this function is never used by FIM coders, because FAME
does this itself on every ANSI string, depending on the user’s color
setup. FIM coders always use ESC[31m for WHITE foreground colour,
and ESC[37m for red colour (even if real ANSI uses 31 for red, and
37 for white). We have decided to use 31 (or 41) as white and 37/47
as red colour for FIM doors.

INPUTS
String - The string to convert.

RESULT (V2)

FAME_library 41 / 49

Points to the passed string (same as input).

1.49 FAME_library.Guide: Contents

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction

Debug functions

File operations

Memory functions

Miscellaneous things

String operations
-> Complete function overview

Notes
---------------------------------------------
All Functions

---------------------------------------------

FAMEAdd64()

FAMEAllocObject()

FAMEAllocPooled()

FAMEAvailExe()

FAMEChrCut()

FAMEChrCutCase()

FAMECreatePool()

FAMECutANSI()

FAMEDeletePool()

FAMEDosMove()

FAMEExecuteDir()

FAMEFileCopy()

FAMEFillMem()

FAMEFreeDevInfoList()

FAMEFreeDiskSpace()



FAME_library 42 / 49

FAMEFreeExecuteDirList()

FAMEFreeFile()

FAMEFreeObject()

FAMEFreePooled()

FAMEFSearch()

FAMEGetDevInfoList()

FAMEIsNumStr()

FAMELoadFile()

FAMELoadFilePooled()

FAMEMemSet()

FAMENum64ToStr()

FAMENumToStr()

FAMEOverallBytes()

FAMEPostFile()

FAMEResetPool()

FAMEReverseLong()

FAMEReverseWord()

FAMEStackReport()

FAMEStartECTimer()

FAMEStopECTimer()

FAMEStrChr()

FAMEStrChrCase()

FAMEStrCopy()

FAMEStrCut()

FAMEStrCutCase()

FAMEStrFil()

FAMEStrMid()

FAMEStrStr()



FAME_library 43 / 49

FAMEStrStrCase()

FAMEStrToLower()

FAMEStrToUpper()

FAMESub64()

FAMESwapRedWhite()

1.50 FAME_library.Guide: Debug Functions

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction
-> Debug functions

File operations

Memory functions

Miscellaneous things

String operations

Complete function list

Notes

Debug Functions

FAMEStackReport()

1.51 FAME_library.Guide: File Operations

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction

Debug functions
-> File operations

Memory functions

Miscellaneous things

String operations



FAME_library 44 / 49

Complete function overview

Notes
---------------------------------------------
File Operations

---------------------------------------------

FAMEDosMove()

FAMEFileCopy()

FAMEFreeFile()

FAMEFSearch()

FAMELoadFile()

FAMELoadFilePooled()

1.52 FAME_library.Guide: Memory Functions

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction

Debug functis

File operations
-> Memory functions

Miscellaneous things

String operations

Complete function overview

Notes

Memory Functions

FAMEAllocPooled()

FAMECreatePool()

FAMEDeletePool()

FAMEFillMem()

FAMEFreePooled()

FAMEMemSet()

FAME_library 45 / 49

FAMEResetPool()

1.53 FAME_library.Guide: Miscellaneous Things

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction

Debug functions

File operations

Memory functions
-> Miscellaneous things

String operations

Complete function overview

Notes
---------------------------------------------
Miscellaneous Things

---------------------------------------------

FAMEAdd64()

FAMEAllocObject()

FAMEAvailExe()

FAMEExecuteDir()

FAMEFreeDevInfoList()

FAMEFreeDiskSpace()

FAMEFreeExecuteDirList()

FAMEFreeObject()

FAMEGetDevInfoList()

FAMEOverallBytes()

FAMEPostFile()

FAMEReverseLong()

FAMEReverseWord()

FAMEStartECTimer()



FAME_library 46 / 49

FAMEStopECTimer()

FAMESub64()

1.54 FAME_library.Guide: String Operations

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction

Debug functions

File operations

Memory functions

Miscellaneous things
-> String operations

Complete function overview

Notes

String Operations

FAMEChrCut()

FAMEChrCutCase()

FAMECutANSI()

FAMEIsNumStr()

FAMENum64ToStr()

FAMENumToStr()

FAMEStrChr()

FAMEStrChrCase()

FAMEStrCopy()

FAMEStrCut()

FAMEStrCutCase()

FAMEStrFil()

FAMEStrMid()

FAME_library 47 / 49

FAMEStrStr()

FAMEStrStrCase()

FAMEStrToLower()

FAMEStrToUpper()

FAMESwapRedWhite()

1.55 FAME.library/Notes

FAME.library V 4.00 function reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Introduction

Debug functions

File operations

Memory functions

Miscellaneous things

String operations

Complete function overview
-> Notes

---------------------------------------------
Notes

---------------------------------------------

Locale notes:

Some FAME.library functions support Locale features, but all
functions never fail if any locale.library problem occurs.
Locale.library version must be V38 or higher.

General notes:

FAME.library needs AmigaOS V37 (Kickstart 2.05) or higher,
otherwise any attempt to open FAME.library will fail.

As long as not especially stated, most FAME.library functions
need less than 100 bytes of stack space; some of the functions
call AmigaOS functions which need some more. However, a minumum
stack size of 4096 bytes is suggested by Commodore and should
normally be enough.

Some FAME library functions are very simple, thought for non-
asm programmers. For maximum speed, asm writers may use their
own inline code. I think that asm developers will know well



FAME_library 48 / 49

about which of the functions must be no doubt extremely small.

1.56 FAME.library/Introduction

Welcome to FAME.library !

FAME.library is a public shared library, first developed for having some
fast assembler code for use by the FAME BBS only, but after some time,
many functions have been built in which may be useful for everybody;
not only for FAME BBS or FAME door programmmers.

So, here it is. FAME.library is a public shared function library, which may
be freely spread everywhere, as long as both library and this document always
get spread together, and in unchanged state.

FAME.library is SHAREWARE. Developers who want to include FAME.library
in PD or FREEWARE programs, wre absolutely *no profit* is gained anyway,
may use FAME.library for FREE. Also, all users of *any kinda program* which
makes use of FAME.library, do not have to pay anything for FAME.library.
The ShareWare donation must only be "paid" by developers who want to use
FAME.library within some commercial or ShareWare program(s): the ShareWare
"amount" for FAME.library is one free and fully registered copy of your
program(s), registered to me, the author of FAME.library. Thats all.
So this kind of ShareWare donation "costs" you not a single buck. :^)

Note: FAME.library contains some special FAME BBS functions, only used
by the FAME BBS and their doors, so that other programs, which have nothing
to do with BBS systems, don’t have any use of, but this handsome of functions
really doesn’t consume much memory. Some of these functions are declared
as private, because i don’t think that any other program could have any use
of these things. I suggest *not* to try using FAME private functions, because
everything may change here with future updates.

What is FAME.library good for ?
-------------------------------

Good question, simple answer: FAME.library may be good for anything which
came in my mind which was worth to be a public shared library function.

Many functions replace ANSI C code (c programmers may reduce code size by
replacing many ANSI C functions by FAME.library calls), some functions are
FAME BBS functions, mostly used by FAME and it’s door programs, and the
remaining ones are miscellaneous things; anything i thought about "how
nice if this was a library function". Just have a look into the function
overview.

Contact Address
---------------

E-Mail: Bloodrock@funboard.in-berlin.de

Attention: my E-Mail address is not valid at the moment.
Try to contact me by writing mail to my account at the Punishment Inc. BBS:



FAME_library 49 / 49

+49 30 694-8470 / 694-8570.

About
-----

FAME.library is © by Oliver "Bloodrock" Lange.

FAME BBS is © by David "Strider" Wettig.

Amiga is a registered Trademark (of some company. Who knows which ?)


	FAME_library
	FAME.library/FAMEAdd64
	FAME.library/FAMEAllocObject
	FAME.library/FAMEAllocPooled
	FAME.library/FAMEAvailExe
	FAME.library/FAMEChrCut
	FAME.library/FAMEChrCutCase
	FAME.library/FAMECreatePool
	FAME.library/FAMECutANSI
	FAME.library/FAMEDeletePool
	FAME.library/FAMEExecuteDir
	FAME.library/FAMEFileCopy
	FAME.library/FAMEFillMem
	FAME.library/FAMEFreeDevInfoList
	FAME.library/FAMEFreeDiskSpace
	FAME.library/FAMEFreeExecuteDirList
	FAME.library/FAMEFreeFile
	FAME.library/FAMEFreeObject
	FAME.library/FAMEFreePooled
	FAME.library/FAMEFSearch
	FAME.library/FAMEGetDevInfoList
	FAME.library/FAMEIsNumStr
	FAME.library/FAMELoadFile
	FAME.library/FAMELoadFilePooled
	FAME.library/FAMEMemSet
	FAME.library/FAMEDosMove
	FAME.library/FAMENum64ToStr
	FAME.library/FAMENumToStr
	FAME.library/FAMEOverallBytes
	FAME.library/FAMEPostFile
	FAME.library/FAMEResetPool
	FAME.library/FAMEReverseLong
	FAME.library/FAMEReverseWord
	FAME.library/FAMEStackReport
	FAME.library/FAMEStartECTimer
	FAME.library/FAMEStopECTimer
	FAME.library/FAMEStrChr
	FAME.library/FAMEStrChrCase
	FAME.library/FAMEStrCopy
	FAME.library/FAMEStrCut
	FAME.library/FAMEStrCutCase
	FAME.library/FAMEStrFil
	FAME.library/FAMEStrMid
	FAME.library/FAMEStrStr
	FAME.library/FAMEStrStrCase
	FAME.library/FAMEStrToLower
	FAME.library/FAMEStrToUpper
	FAME.library/FAMESub64
	FAME.library/FAMESwapRedWhite
	FAME_library.Guide: Contents
	FAME_library.Guide: Debug Functions
	FAME_library.Guide: File Operations
	FAME_library.Guide: Memory Functions
	FAME_library.Guide: Miscellaneous Things
	FAME_library.Guide: String Operations
	FAME.library/Notes
	FAME.library/Introduction


